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1. 

The study of the transverse vibrations of rectangular plates is among the most
widely studied topics in structural dynamics, and the application of the assumed
modes/Rayleigh–Ritz method to derive models of this vibration for various sets
of boundary conditions has been employed for nearly the entire century. The shape
functions employed in the assumed modes method need not be eigenfunctions of
the governing equations of motion, but instead must form an admissible set, in
part by satisfying the geometric boundary conditions of the system, as shown by
Meirovitch [1]. Given the extreme difficulty in solving for closed form, analytic
solutions to the plate vibration equations, study of these vibrations has often relied
upon admissible function sets taken from other sources. In particular, for free
vibration of a beam, closed form solutions are easily written for multiple boundary
condition pairs, and such solutions are often employed as admissible sets in the
rectangular plate vibration problem. Specifically, shape functions satisfying similar
beam boundary conditions have been employed in the assumed modes method for
rectangular plates by Leissa [2, 3], Warburton [4] and Young [5]. Relatively
recently, Bhat and Mundkur [6] offered an excellent collection of natural
frequencies of the freely vibrating plate. These frequencies were obtained by using
‘‘plate characteristic functions’’ obtained from reduction of the plate vibration
equations in the Rayleigh–Ritz method. Specifically, Bhat and Mundkur offer the
first 36 frequencies for 11 cases, with variation of plate aspect ratio and boundary
conditions. They demonstrate the validity of the plate functions by comparing the
frequencies generated by the plate functions with previously published data.
However, in the results presented for asymmetric plates, several vibration
modes/frequencies were omitted from the sorted sets tabulated. As such, data
presented herein are intended to supplement the work of Bhat and Mundkur [6],
tabulating modal indices and natural frequencies for omitted modes.

2.   

The authors have constructed a numerical method for implementing the
assumed modes/Rayleigh–Ritz method for the rectangular plate, employing as
assumed modes a set of beam functions, as first presented by Warburton [4] and
later by Blevins [7]. (Note that separate beam functions are used in each of the
plate’s two directions, and the convolution of the two, according to principles of
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separability, produces the actual mode shape.) In his study of the rectangular
plate, Warburton presents approximate natural frequencies for the plate by using
asymptotic behavior of the beam functions in the assumed modes method. That
is, he gives a means to determine vibration frequencies for particular beam
function pairs, e.g. the fundamental vibration mode in the x direction and the
second vibration mode in the y direction.

In the current method, the authors employ these approximate frequencies to
determine the set of beam functions which correspond, approximately, to the
lowest occurring plate frequencies. This sorted set of lowest frequency mode
shapes is then utilized in the assumed modes method. While studies of small
numbers of vibration modes generally allow for intuitive ordering of modes, in
larger studies, the ordering process is useful, as will be seen.

In particular, a state-space model of the rectangular plate is created, and the
natural frequencies of the system are found as the eigenvalues of the state matrix.
For comparison and validation, data from the present method are compared with
the data published by Bhat and Mundkur in the aforementioned article for the
various aspect ratios and boundary conditions.

3. 

For square plates (a=1·0) of all boundary conditions, the present method
yields excellent agreement with Bhat and Mundkur’s results, generating natural
frequencies which are generally only slightly greater than those published. Data
for these cases are not presented in this letter.

T 1

Natural frequencies of CCCC plate, V=va2zm0s /D, a=0·5, N=36 modes. PF,
plate functions (Bhat and Mundkur [6]); BF, beam functions

i Vi(PF) Vi(BF) (m/n) i Vi(PF) Vi(BF) (m/n)

1 24·5789 24·5898 2/2 19 – 186·4452 3/8
2 31·8298 31·8523 2/3 20 – 189·9961 2/9
3 44·7796 44·8124 2/4 21 202·2706 202·3528 5/2
4 63·3473 63·3986 2/5 22 209·4899 209·6852 4/7
5 63·9916 64·0282 3/2 23 209·7974 210·2058 5/3
6 71·0982 71·1728 3/3 24 221·7169 221·8397 5/4
7 83·3386 83·3951 3/4 25 – 225·3275 3/9
8 87·2815 87·3554 2/6 26 – 234·9169 2/10
9 100·8726 100·9500 3/5 27 238·7859 238·9466 5/5

10 116·3693 116·4996 2/7 28 – 243·5799 4/8
11 123·2723 123·3282 4/2 29 261·2743 261·7169 5/6
12 123·8458 123·9094 3/6 30 – 269·3846 3/10
13 130·4184 130·5373 4/3 31 – 281·6776 4/9
14 142·5743 142·7105 4/4 32 – 284·3529 2/11
15 – 150·7328 2/8 33 288·3459 289·0325 5/7
16 151·9839 152·1821 3/7 34 300·9999 301·3160 6/2
17 159·7423 159·9558 4/5 35 308·2931 308·9632 6/3
18 182·3265 182·4400 4/6 36 – 318·4034 3/11



D.R. 858834 JSV 217/3 (Issue) MS 2717

    581

T 2

Natural frequencies of CPCP plate, V=va2zm0s /D, a=0·5, N=36 modes. PF,
plate functions (Bhat and Mundkur [6]); BF, beam functions

i Vi(PF) Vi(BF) (m/n) i Vi(PF) Vi(BF) (m/n)

1 23·8156 23·8160 2/2 19 – 171·9190 3/8
2 28·9516 28·9566 2/3 20 174·8917 175·1643 4/6
3 39·0933 39·1114 2/4 21 199·9773 200·4481 4/7
4 54·7541 54·7937 2/5 22 201·9816 201·9822 5/2
5 63·5345 63·5349 3/2 23 – 208·0484 3/9
6 69·3279 69·3324 3/3 24 208·3934 208·4013 5/3
7 75·8635 75·9303 2/6 25 – 212·2580 2/10
8 79·5307 79·5490 3/4 26 219·2186 219·2520 5/4
9 94·6026 94·6487 3/5 27 – 230·8852 4/8

10 102·2462 102·3491 2/7 28 234·6228 234·7123 5/5
11 114·8177 114·9062 3/6 29 – 249·3080 3/10
12 122·9296 122·9299 4/2 30 254·7748 254·9583 5/6
13 129·0978 129·1110 4/3 31 – 259·7159 2/11
14 – 133·9240 2/8 32 – 266·4915 4/9
15 139·6374 139·6919 4/4 33 279·7837 280·1332 5/7
16 140·2558 140·4158 3/7 34 – 295·6502 3/11
17 154·8229 154·9629 4/5 35 300·7397 300·7399 6/2
18 – 170·5763 2/9 36 307·3205 307·2524 4/10

T 3

Natural frequencies of CPCP plate, V=va2zm0s /D, a=2·0, N=36 modes. PF,
plate functions (Bhat and Mundkur [6]); BF, beam functions

i Vi(PF) Vi(BF) (m/n) i Vi(PF) Vi(BF) (m/n)

1 54·7431 54·7871 2/2 19 642·9176 643·2697 2/5
2 94·5853 94·6382 3/2 20 676·3539 677·1699 3/5
3 154·7757 154·8164 4/2 21 – 702·6006 8/3
4 170·3819 170·5454 2/3 22 732·1520 732·4469 4/5
5 206·7756 207·0584 3/3 23 – 749·7553 9/2
6 234·5854 234·6168 5/2 24 753·4817 753·2002 7/4
7 265·4212 265·5382 4/3 25 808·6187 808·8001 5/5
8 333·9558 333·9802 6/2 26 – 861·5418 9/3
9 344·7531 344·9162 5/3 27 – 892·9465 8/4

10 366·9272 367·1765 2/4 28 907·4863 908·2635 6/5
11 401·3584 401·8606 3/4 29 – 927·6925 10/2
12 444·4839 444·3308 6/3 30 998·0407 998·4505 2/6
13 452·8081 452·9296 7/2 31 1024·4605 1025·6754 7/5
14 458·2396 458·4998 4/4 32 1030·9283 1033·8248 3/6
15 536·0290 536·2239 5/4 33 – 1039·8529 10/3
16 563·4211 563·5944 7/3 34 – 1051·4095 9/4
17 – 591·5122 8/2 35 1086·0900 1088·9955 4/6
18 635·3948 634·5721 6/4 36 – 1125·3052 11/2
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For the non-square cases (a=0·5), however, the present method yields
numerous occurrences of appreciably smaller frequencies than those published.
Table 1 lists non-dimensionalized frequency data for a completely clamped plate
with a=0·5. Careful comparison shows that for the first 36 frequencies, the
present method contains all of the frequencies/modes listed by Bhat and Mundkur,
as well as ten others. As such, it is concluded that the present method captures
modes previously omitted.

Examination of the nature of these ‘‘omitted’’ modes shows that they
correspond to highly asymmetric mode shapes; the beam function indices
corresponding to each frequency are also presented for the clamped plate with
a=0·5 in Table 1. That the pattern of omission occurs in greater number in the
non-square plates than the square plates is expected, for in these plates asymmetric
vibration patterns occur at lower frequencies than in the square plate as a result
of the asymmetric shape.

Data for the a=0·5 and a=2·0 cases of the CPCP and CCPF plates are
presented in Tables 2–5. Bhat and Mundkur [6] considered both beam end
conditions and plate edge conditions in constructing plate functions involving free
edges, and data from both of these cases are given in Tables 4 and 5. (The standard
convention has been used in naming plates according to boundary conditions,
namely beginning with the x=0 (left) edge, and proceeding counter-clockwise.)

Tables 3–5 demonstrate a few occurrences where the frequencies of the current
method are actually lower than those of the plate function set, indicated by

T 4

Natural frequencies of CCPF plate, V=va2zm0s /D, a=0·5, n=0·3, N=36
modes. PF plate functions (Bhat and Mundkur [6]); BC beam boundary conditions;

PC plate boundary conditions; BF, beam functions

i Vi(PF–BC) Vi(PF–PC) Vi(BF) (m/n) i Vi(PF–BC) Vi(PF–PC) Vi(BF) (m/n)

1 15·8713 15·8224 15·8563 2/1 19 – – 150·9801 2/8
2 20·1727 20·1526 20·5302 2/2 20 152·3236 152·1441 152·7465 4/5
3 29·1861 29·1707 29·3917 2/3 21 178·1298 177·0861 176·5741 4/6
4 43·2528 43·2208 43·3855 2/4 22 178·7329 178·6274 178·9479 5/1
5 50·4234 50·3326 50·4475 3/1 23 – – 183·9330 3/8
6 54·9507 54·9035 55·6948 3/2 24 183·4222 183·3634 184·3880 5/2
7 62·4517 62·3891 62·6252 2/5 25 – – 190·1825 2/9
8 64·1730 64·1442 64·8704 3/3 26 192·9072 192·8707 193·9053 5/3
9 78·3461 78·2553 78·7281 3/4 27 – – 205·6971 4/7

10 86·7645 86·6492 86·8753 2/6 28 207·5270 207·4227 208·3018 5/4
11 97·3794 97·2207 97·6572 3/5 29 – – 222·8437 3/9
12 104·7084 104·6075 104·8381 4/1 30 226·8730 226·6956 227·5232 5/5
13 109·3366 109·2813 110·2598 4/2 31 – – 234·9091 2/10
14 – – 116·2805 2/7 32 – – 238·1632 4/8
15 118·7109 118·6769 119·7002 3/6 33 253·8962 252·5287 251·5016 5/6
16 122·0101 121·4149 121·4953 4/3 34 – – 268·0755 3/10
17 133·1380 133·0358 133·8311 4/4 35 272·4962 272·3885 272·7349 4/9
18 – – 150·4869 3/7 36 277·2285 277·1677 276·7913 6/1



D.R. 858834 JSV 217/3 (Issue) MS 2717

    583

T 5

Natural frequencies of CCPF plate, V=va2zm0s /D, a=2·0, n=0·3, N=36
modes. PF, plate functions (Bhat and Mundkur [6]); BC, beam boundary conditions;

PC, plate boundary conditions; BF, beam functions

i Vi(PF–BC) Vi(PF–PC) Vi(BF) (m/n) i Vi(PF–BC) Vi(PF–PC) Vi(BF) (m/n)

1 26·3361 26·3006 26·5945 2/1 19 528·7590 528·7333 529·3469 3/4
2 59·9958 59·8951 60·9949 3/1 20 – – 530·3010 8/1
3 101·4408 101·4374 101·7462 2/2 21 584·2719 584·2179 584·6026 8/2
4 113·7162 113·5956 115·4156 4/1 22 – – 618·7429 4/4
5 137·8506 137·8308 139·0161 3/2 23 634·6429 634·6098 638·8085 7/3
6 187·3360 187·2092 189·5492 4/2 24 660·6503 660·5690 661·0411 5/4
7 193·5639 193·5293 196·4864 5/1 25 – – 683·3217 9/1
8 258·6185 258·6159 258·9862 5/2 26 757·1033 757·0005 756·7958 9/2
9 268·0493 268·0043 273·0526 2/3 27 – – 772·6262 6/4

10 280·8205 280·6914 283·4052 6/1 28 – – 774·6338 8/3
11 293·4216 293·4093 293·9701 3/3 29 810·5154 810·5100 811·0097 2/5
12 349·4463 349·4247 349·8267 6/2 30 843·6211 843·5938 844·4858 3/5
13 361·7837 361·7315 369·1263 4/3 31 – – 856·0787 10/1
14 394·0984 393·9687 396·9792 7/1 32 873·0693 872·9515 874·2815 7/4
15 425·3304 425·3027 426·4601 5/3 33 898·4257 898·3667 899·0222 4/5
16 474·9500 474·8928 484·0216 7/2 34 – – 929·4849 10/2
17 494·9540 494·9405 495·3763 2/4 35 – – 946·1242 9/3
18 520·4235 520·3925 522·9345 6/3 36 974·4104 974·3156 975·8634 5/5

underlining. That the beam functions would yield superior frequencies to those
from the plate functions indicates the degree in which the modal omission hinders
the convergence of frequencies of existing vibration modes/frequencies. In short,
modal omission results in errors even for some modes not omitted.

4. 

The data presented by Bhat and Mundkur [6] embody a thorough examination
of the natural frequencies of the free vibration of a rectangular plate, as
determined by the Rayleigh–Ritz method. A similar approach using beam
functions as assumed modes is employed in the current method. The set of
assumed modes is sorted according to lowest beam function frequencies, and then
employed in the Rayleigh–Ritz process. In the non-square plates, the sorting shows
the prior omission of numerous frequencies/vibration modes. It is concluded that
sorting of assumed modes by approximate frequencies, according to aspect ratio
and boundary conditions, is essential for accurate modelling in the Rayleigh–Ritz
process.
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: 

V non-dimensionalized frequency
v natural frequency
a, b plate dimensions
a= a/b aspect ratio
m0s mass per unit area
D flexural rigidity
n Poisson’s ratio


